On a plug-in wavelet estimator for convolutions of densities
نویسندگان
چکیده
The nonparametric estimation of the m-fold convolution power of an unknown function f is considered. We introduce an estimator based on a plug-in approach and a wavelet hard thresholding estimator. We explore its theoretical asymptotic performances via the mean integrated squared error assuming that f has a certain degree of smoothness. Applications and numerical examples are given for the standard density estimation problem and the deconvolution density estimation problem.
منابع مشابه
Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملWavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors
Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملOn Adaptive Wavelet Estimation of a Class of Weighted Densities
We investigate the estimation of a weighted density taking the form g = w(F )f , where f denotes an unknown density, F the associated distribution function and w is a known non-negative weight. Such a class encompasses many examples, including those arising in order statistics or when g is related to the maximum or the minimum of N (random or fixed) independent and identically distributed (i.i....
متن کاملIdeal denoising within a family of tree-structured wavelet estimators
Abstract: We focus on the performances of tree-structured wavelet estimators belonging to a large family of keep-or-kill rules, namely the Vertical Block Thresholding family. For each estimator, we provide the maximal functional space (maxiset) for which the quadratic risk reaches a given rate of convergence. Following a discussion on the maxiset embeddings, we identify the ideal estimator of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013